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ABSTRACT
A new algorithm for five-hole probe cah'bradon and data re-

duction using a non-nulling method is developed. The significant
• • 1) two comp °nents of the unit vectcr

features of the algorithm are. yaw angles as flow direc-
in the flow direction replace pitch and
don variables, and 2) symmetry rules are developed that greatly

simplify Taylor's sexies representations of the calibration data.
In data reduction, four pressure coefficients allow total pressure,

static pressure, and flow direction to be calculated direcdy. The

new algorithm's sinIplicitY permits an analytical treatment of the

propagation of uncellJ_tY ixt five-hole plobe measure_e_L The

objectives of the uncertainty analysis are to quantify uncertainty
of five-hole probe results (e.g., total pressure, static pressure, andof the result un-

flow direction) and determine the dependence experimental and

certainty on the unceC_nty of all underlying
calibration measurands. This study oudines a general procedure
that other researchers may use to determine five-hole probe result

unc.crtaintyand provides guidance to improve measurement tech-

nique. The new algorithm is applied to calibrate and reduce data
fzom a rake of five-hole probes. Here, ten individual probes axe

mounted on a single probe shaft and used simultaneously. Use

of this probe is made practical by the simplicity afforded by this

algorithm.

NOMENCLATURE

= coefficients of the Taylor's series expansion of r

a_i Cp,_g, Equation 5 U, V, W

_,p°,g, Equation
al,---, at = coefficients of , at, Equation 13

= vectorcontainingat,... _, G
a = coefficients of the Taylor's series expansaon of

bij Cps, Equation 6 6_, 6_

bl,..-, bs = coefficients of Cps. Equation $ _o, wo

b = vector containing bl,..-, bs, Equation 14 wl
V

Cpo_g = probe average pressure coefficient, Equation 1 vl,
= truncated Taylor's series approximation of 6p

Cpo,0 Cp°_g, Equation 7 6po

= probe center pressure coefficient` Equation 2 6p,=p
Cps uancat_ Taylor's series approximauon of 6p_,z

Cps Cp_, Equation 8 69

Cp_ = j direction pressure coefficient` Equation 3

Cp_ = k direction pressure coefficient` Equation 4 0

= coefficients of the Taylor's series expansions

of _ and w, Equations 9 and 10

= coefficients of _ and _, Equations 11 and 12

= vector containingc1,..., cs,Equation 15

= influence function for _)2 + (6_) 2

resulting from 6p_

= influencefuncdon for _/_)2 + (_)2

resulting from 8pe=p

= influence function for _/_)2 + (_G) 2

resulting from 6qo
= influence function for 6po resulting from 6p_°_

= influence function for 6po resulting from 6pe=v

= influence function for 6p resulting from 6p_o_

= influence function for 6p resulting from 6p,=_

= vector containing productsof Cp, and Cp,_.

Used to determine a in Equation 13

vector containingprodacts of Cp, and Cp,_.
Used to _ine b in Equation 14

matrix containing products of Cp, and Cp_.

Used to determine c in Equation 15

= local static pressure
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= local total pressure ..... _..

pressure measured by the:m .prOTfouTouter
average pressure measurea oy ,---

probe robes, povg ----- (pt +P2 + p3 +Pt)/4

= rake probe radial position ..... ts
cm'tesian velocity vector compu-_,,

= components of Cartesian unit vector m

direction of velocity
= truncated Taylor's series approximations of v

andw
= flow direction result uncertamy

= pitch and yaw offset, Equations 16 and 17

probe tiprotationparameters, Equation 18

cartesian velocity vector

static pressure result unce_.' y

mud pressure result uncertainty . _

calibration pressme measurano uzr,.=,,,_,-a

= calibration flow direction measarand

uncertainty

= pitch angle



Fioure 1 A typical five-hole probe

= yaw angle

g' = probe outer tube opening angle

= rake probe circumferential position

INTRODUCTION

Figure 1 shows a typical five-hole probe and the coordinate

system used in this analysis. The openings of the four outer tubes
are inclined from the ncrmal to their axes by angle _ while the

center tube opening is normal to its axis. The pressure sensed

at the opening of each tube is denoted p_. The subscript i refers

to the probe opening, as defined in Figure 1. The mean velocity
vector is V = UI + Vj+ Wk

and the umt vector in the mean flow
directions is V/_VI = el -/- vj -F tok. Table 1 prescribes the unit

vectors in terms of pitch and yaw angles in both the pitch-yaw
and yaw-pitch systems of angle definitions. The sign convention

was chosen so that (small) positive values of pitch and yaw angle

provide positive v and to velocity components. When flow angles

are required in this analysis the pitch-yaw system is used however
the conclusions are valid for the yaw-pitch system.

The ability to measure total and static pressure (hence veloc-

ity magnitude) and flow direction with a five-hole probe is well

established. Two different measurement techniques have been em-

ployed. For the yaw-nu/ling method, the flow yaw angle is de-

termined by the amount of rota_on required until the pressures

measured by tubes 2 and 4 are equal. Flow pitch angle is de-

termined by the pressures of tubes 1, 3, and 5 and the results of

Unit vector Piteh-yaw Yaw-pitch

Table 1 Unit vectors

pitch angle calibration. For the non-nuUing method, the probe
remains stationary and calibration is used to determine flow direc-

lion./ In both methods, calibration is used to determine total and

static pressure. Each method has advantages. Calibration and data

reduction require less effort with the yaw-nuRing method. When

acquiring data in an experiment, the yaw-nulling method requires
more time and more sophisticated actuation and data acquisition

hardware than the non-nulling method. When the amount of data

gathered in an experiment is large, the exit° effort expended to
calibrate the probe for the non-hulling method is more than com-

pensated by the effort saved when acquiring data. This analysis
is about the non-nailing method.

Four pressure coefficients, Equations 1-4, are used in the cali-

brmion and data reduction procedure. Over a range of Reynolds

numbers and subsonic Mach numbers the four pressure coefficients

depend on flow direction only. Calibration is used to determine

the relationships that exist between the four pressure coefficients

and flow direction. In data reduction, Cp_ and Cp,_ allow flow
direction to be _ed, while Cps and Cp°_g allow total and
static pressure to be _ed.

CpatJ 9 _

po - p (l)

Cps = Ps--L_._
P0 - p (2)

Cpv = P__=- p_

Ps - p==g (3)

Cp=_ = p3-pl

Ps - p=,g (4)

There continues to be a great dea/of interest regarding the need

to quamUy and report uncertainty in numerical and experimenta/

fluid flow studies (Rood and Telionis, 1991 and Sutton, 1994).

Most five-hole probe calibration and data reduction algorithms

are not genially suited for an analytical _reatment of uncertainty
analysis. Uncertainty may be assessed by propagating messurand

uncertainty through the data reduction programming by a numer-
ical technique known as "jitter" analysis (Moffat' 1982). While

the jitter technique allows the uncertainty of individual probes to
be quantified, it provides liRle insight into basic processes un-

derlying the uncertainty that analytical IreaUnents yield. In the

following section we develop an algorithm with a simplicity and

accur=gy that permits an analytical treaunent of the propagation
of uncertainty, revealing details about the relationships between

probe geometry, cah'bration, data reduction and result uncertainty
and providing guidance to improve measurement technique.

x The choice of pitch and yaw angle definitions depends on

several factors. For the non-nulling technique the angle definition

depends on the probe actuation hardware used in calibration. For

the yaw-nulling technique the yaw-pitch angle definition must beused.
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THE NEW ALGORITHM

The discussion up to this point is classical. ExceUent descrip-

tions are given by Bryer and Pankhurst (1971) and Treaster and
Yocum (1979). Although other authors use different names and

definitions, common to all these methods is the use of four pres-

sure coefficients, two coefficients to determine flow direction and

two coefficients to de.mine total and static pressure. Our algo-

rithm differs from previous re.seurch in our choice of flow direction
variables and how the relationships between the four coefficients
and flow direction are formula_d.

Traditionally, pitch and yaw angles are the variables used to

express flow direction. Instead, we use components of the unit
vector in the flow direction. Because the three components satisfy

the criteria u 2 + v 2 + to 2 = 1, only two are required to uniquely

specify flow direction (with the resu-iction that u > 0). We use
v and w. Using two unit vector components instead of pitch and

yaw angles has several advantages: 1) the calibration results do not

depend on the choice of pitch-yaw or yaw-pitch angle definitions,

2) probe tip symmetry is expressed easier, 3) the relationships

between pressure coefficients and flow direction are simpler and,

4) a step is removed from the data reduction procedure, whvre the

desired answer is usually the velocity vector and not pitch and

yaw angles. During calibration pitch and yaw angles are recorded
and are laterconvextedto unitvectorscomponents accordingto

the definitionsin Table I.

Two generalclassesof schemes thathave been reportedto ex-

pressthe relationshipsbetween the fourpressurecoefficientsand

flowdirectionaregraphicalmethods (Dudmnski and Krause,1969

and Bryer and Pankhurst,1971) and interpolativemethods involv-

ingsplinefitsof allthecalibrationdata(Treasterand Yocum, 1979

and Lagraniet al.,1989). Graphicalmethods are not suitablefor

largeexperimentaldatasetsand theinterpolativemethods become
cumbersome and slow when theamount ofcalibrationdataislarge.

We use Taylor'sseriesexpansions in two variables,¢uncated

to fifth ord_, to approximate the relationships between the four

pressure coefficients and flow direction. What is unique in our
approach is to identify and utilize the probe symmeWy to reduce

the number of requize_ coefficients for all Taylor's series from

sixtyto thirteen. For data reduction, flow direction as well as

total and static pressure are obtained from the probe data by direct

calculation. No piecewise interpolative or iterative procedures are

required.

An examination of Figure 1 will show that the five-hole probe

possesses three types of geometric symmetry. They are: 1) sym-

metry with respect to reflection across the zz-plane, 2) symmetry

with respect to reflection across the zy-plane, and 3) symmetry
with respect to 90 ° rotation about the z-axis. The symmeuT of

the probe has imporUmt consequences for the relationships be-

tween the pressure coefficients and the flow direction variables.

One result of symmetry is that within a range of flow directions
about v = 0 and w = 0 there exists a one-to-one relationship be-
tween the flow direction variables v and w and the flow direction

coefficients Cp, and Ups. In fact, the ability to use a five-hole

probe to measure flow direction requires the existence of this one-

to-one relationship. This allows either v and w or Cp, and Cp_

to be used as independent variables to express flow direction.

Since Cpo,, o and Up5 depend on t: and iv, the one-to-one
relationship described allows Cpo,g and Ups to alternatively be

considezed functions of Up, and Cpt,. In Equations 5 and 6 the

coefficients Cpo, g and Ups are repre_nted as a Taylor's series

expansions in the variables Up, and Cpw. z

i=O j--O

(5)

6=0 j=0

Symmetry relationships for Cpa_o and Ups are listed below.
Proofs of the results smu_l below are included in the Appendix:

cpo_(cp.,cp.)= Cvo.,(-cp.,cp.)
Cpo_(Cp_,cp.)= Cp.g(Cp_,-cp.)
Cpo._(cp.,Cp.)= Cpo.,(Cp.,-Cp.)
Cp_(cp.,cp.)= cp_(-Cp.,cp.)
cp_(cp.,Cp.)= Cps(cp.,-Cp.)
cps(cp.,cp.)= Cp_(cp.,-cp.)

The symmetry conditions listed for the coefficients Cpo,g and

Cps greatly simplify their Taylor's series representation. Also,

subsonic flow aerodynamics requires Cps(0, 0) equal one. In the

Appendix, the following results for the Taylor's series are derived:

aij ---- 0, j = 1,3,5,...,

aij = 0, i = 1,3,5,...,

_ij ._- G2i

b;., = O, j = 1,3,5, ....

bi# = O, i = 1,3,5,...,
hi.,= bji

The simplifiedTaylor'sseriesfor Upo,_ and Ups, truncated

at fifth order and given by Equations 7 and 8, result in seven
undetermined series coefficients, rather than thirty that would

generally be required. The Taylor's series coefficients have been
renumbered in Equations 7 and 8 for clarity. The "hat" symbol

that appears above the pressure coefficient is used to distinguish

the Taylo:'s series approximation from the pressure coefficient
based on actual measurement.

2
,,_(cp: + cp_,)+ c7)

2 2., + c,,:,)+

Cps =I+

2b,(cp + c,,,.)+
+ b3 Cp_ Cp,,

(s)

a Using Cp_ and C_o as independent variablesin Equations

5 and 6 allows Cpo, o and Cps tobe calculateddixectiyfrom Cp_

and Cp.. Ifv and w had been used as independentvariablesin

Equation 5 and 6, then an additionalstep would be requiredin

data reduction when determining Cpo,_ and Cps.
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Forflowdirec_on,theunit vector components v and to are

represented in Equations 9 and 10 by Taylor's series expansions

in the variables Cpo and Cp_. s

i=0 j----O

(9)

i=0 jffiO

(10)

In the Appendix the following probe symmetry results for

and to as functions of Up, and Up_o are derived.

_(cv.,cp.)= -_(-cv.,cp.)
_(cv.,Cv.)= _(cp.,-cp.)
to(Cp.,cp.)= w(-Cv.,Cp.)
to(cp.,cp.)= -to(cp.,-cp.)
_(Cp., Cp.) = to(Cp.,-Cp.)

In the same manner used for Cpo,,g and Cps, the results listed

above greatly simplify the Taylor's series representation of n and

to. In the Appendix. the following results for the Taylor's series
coefficients are derived.

c_j = 0, i = 0,2,4,...

c_j = 0, j = 1,3,5,...

d_j ---- 0, i ---- 1,3,5,...

dl i = 0, j ---- 0,2,4,...

cij = dji

Equations II and 12 give the Taylor's series approximation of v

and to Iruucated at fifth ord=. The series coefficients have been

renumbered in Equations 11 and 12 for clarity. The same series

coefficients appear in both Taylor's series expansions. Rather

than requiting thirty coefficients, the truncated Taylor's series

only requires six. The "hat" symbol again is used to distinguish

Taylor's series approximations from actual values.

_(Cp_,cp_)=c_Cp.+
3 2

c2Cp. + csCp_Cp.+ (11)
5 3 2 4

c4Cp, + csCp, Cp_, + ceCp.Cp,,,

_(cp..cp.)=_,cp.+
2 3

csCp, Cp, + c2Cp_+

4 2 3 $
ceOp_Cp,_ + csCp.Opw + ciOp,o

(12)

Note that all the desired simplified Taylor's series, given by

Equations 7, 8, 11, and 12 include terms involving products of

Cp_ and Cp,o. In order to evaluate these coefficients requires

taking calibration data over a range of both pitch and yaw angle

3 Note that v and to are dependent variables in Equations 9
and I0. In data reduction, this allows v and to to be calculated

directly from measured values of Cp_ and Cp_. If Cp_ and Cp_

were expressed as functions of v and to, then a numerical solution

scheme would be required to calculate values of v and to from

measured values of Cp,, and Cp.,.

values. In other words, it is not su£ficient to simply vary pitch

while yaw equals z=o and vice-versa.

The coefficients themselves are found by a least-squares proce-

dure. This results in three systems of simultaneous linear equa-

tions, the solutions of which are the Taylor's series coefficients.

The three systems of equations are given in Equations 13, 14 and

15. The summation in these equations is over all data acquired

during calibration. These equations are solved direefly by matrix
inv=sion.

E micp''''' = E (m,mT)a
i i

[Cp.,_ + Cp.,i a2
4 4 _3m, = j Cpvj+Cp.,i a =
2 2

L Cpv,iCp-, i _4

i i

fcp.,,+Cp.,, ]
4 4n_ = lOp. ,+Cp,. i I b =
§ 2 '[ cp.,,cp.,, J [b3 J

oT)o

Oi -----

Cp.,, Cp,,,,_
Cp_,,,

i Op_,,op=,,, =Cp.,; Cp.,,i

[ Cp;,, Cpk,
3 = Cp.,,cp,,,,,I cP.,_Cp., _ 2 3

LCp,,_Cp_,_ tCp.,iCp..,,

[cI]C2

C3
C=

C4

(13)

(14)

(15)

The_e are several additional details included in the cah'brafion

and data reduction algorithm. Figure 1 shows a Cartefian coor-

dinate system relative to the probe tip. It is useful to think of

a second Cartesian coordinate system relative to the probe shaft.

The probe shaft coordinate system has its z-axis parallel to the

probe shaft and its z-axis is the datum used for measuring probe
shaft rotation. In practice, all measurements of the probe often-

ration are relative to the probe shaft coordinate system. Ideally,

the probe tip is mounted so that the two coordinate systems have

identical orientations. In reafity this is highly unlikely. Four

parameters are needed to account for misalignmem between the

probe tip and probe shaft They are pitch and yaw offset and two

tip rotation parameters.

Pitch and yaw offset relate the difference between the z-axes of

both coordinate systems. The value of pitch offset is _ed

by the probe geometry and should not change unless the probe is

damaged. The yaw offset value is established whenever the probe

is attached to the calibration rig or experimental rig. Thus, the

yaw offset may change whe_ever the probe is moved.

The tip ro_etion parameters relate the difference between the F--

and z-axes of both coordinate systems whet the z-axis difference

has been eliminated. This is shown in Figure 2. To be rigorously

correct, ff the two tip rotation parameters are such that vl # to1,

then the probe tip is skewed and the symmetry criterion that

were used to develop the calibration procedure are not satisfied.

4



z

arctan wt

I
!
I
!

V_jure 2 Probe tip rotation angles

However, small amounts of skewness, which are unavoidable,

result in only a small deviation from the symmetry criterion.

Measuring and allowing for minor skewness in this manner can

be viewed as a pe_urbafion of the symmelry condition. The two

tip rotation angles are also determined by the probe geometry and

are unLikely to change unless the probe is damaged.

Values of the four parameters are det=mined from calibration

data. This is necessary because it is impractical to accurately de-

termine these quantifies from obsex-vations of the probe geometry

alone. First, pitch and yaw angles recorded during calibration are
converted to unit vector components. The pitch offset is deter-

mined by evaluating the dam recorded for zero yaw angle (hence
v = 0) to find the value of w when Cp,o = 0. This value, too, is

the pitch offset. A least square error procedure is used to deter-
mine its numerical value. Likewise, the yaw offset is determined

by evaluating the data recorded for zero pitch angle (hence to = 0)
to find the value of v when Cp_ = 0. Equations 16 and 17 trans-

form unit vector components for pitch offset (Equation 16) and

yaw offset (Equation 17). The primed unit vector components
indicate values uncorrected for offset.

; L-too 0 1V/_'_- Wo2J

(16)

= _ v' (17)
0 tot

Determining the tip rotation angles is slightly more complicated.

If there were no tip rotation, then the vector VCp_(0,0) would

point in the direction of the _¢-axis and the vector VCp,,(0,0)

would point in the direction of the z-axis. The tip rotation

parameters are a measure of the angles between the two gradient
vectors and their corresponding axes. They are calculated using

Equation 18. Values of the partial derivatives are determined
with another least squares procedure. Equation 19 is the final

relationship applied to transform unit vector components from the

probe shaft coordinate system to the probe tip coordinate system.
The primed unit vector components indicate values uncorrected

for tip rotation.

= 0)
OCp" t0 0/

Ow _, I !

(0,0)
tO 1 _- _W.(0,0)

(18)

In

are:

1.

! 0 o ] r,,'l
1 -- t/ I

\ _/0+-,=)(1+=:)}
summary, the steps used in the probe calibration algorithm

Express the measured pressures as pressure coefficients

Cp,_g. Cps, Cp, and Cp_, using Equations I, 2. 3 and
4.

2. Convert the pitch and yaw angles re.corded during calibration

to unit vector components using the definitions from Table 1.

3. Determine pitch and yaw offset too and vo from the calibra-

tion data and apply them to the unit vector component values

using Equations 16 and 17.

4. Determine the tip rotations parameters vl and toz from the
calibration data using Equation 18 and apply them to the unit

vector compone^nt values using Equation 19.
5. Calculate the Cpa,,g(Cpv, Cpw ) Taylor's series coefficients

using Equation13.
6. Calculate the Cps(Cp_,Cpw) Taylor's series coefficients

using Equation 14.

7. Calculate the U(Cpv, Cp_,) and _(Cp_, Cp,,) Taylor's se-

ries coemcients using Equation 15.

Once the probe is calibrated, the procedure for reducing ex-

perimental data is s_aighfforward. The steps that are applied are

listed below:

1. Determine the coefficients Cp,_ and Cp,, from the probe

pressure data using Equations 3 and 4.
2. Substitute the values of Cp, and Cp,_ intoEquations 11

and 12 to calculate _ and G.

3. Substitute the values of CpK and Cp,, into Equations 7 and
8 to calculate _p,og and Ups.

4. Calculate total and static pressure with Equation 20, which

is simply a rearrangement of Equations 1 and 2 (with Cpa_g
and Cps substitutedfor C1_,_g and Cps).

[1 -- Op==, Cps - 1]

= - p.o,
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Figure 3 Pitch and yaw calibration results Figure 4 Op.,g calibration results

5, Convert the unit vector components from the probe tip co-

ordinate system m the probe shaft coordinate system using,

in order, Equations 21, 22 and 23. These equations are the
inverse of Equations 19, 17 and 16.

't'I"I (2z)
J('+:,)('+'D/

[.,] _o_' = 1 0 (23)

to' o J

constant to nominaily horizontal. An examination of Figure 3 will

verify the validity of Equations 11 and 12. Average (RMS)error
for both _ and to is less than 0.0053 (or less than 0.3°). L_ewise,

contour plotsof the Cp=,, e and Cps coefficients as functions of

independent variables Cp,, and Cpu, are shown in Figures 4 and

5. Solid lines are the Taylor's series approximations, broken lines

are calibration data. Average error for both coefficients is less than

1% of dynamic pressure. Again, the agreement is quite good.

Probe Geometry and Response

By making some phus_le assumptions it is possible to re-

late the leading ord_ probe calibration coefficients for Cpo.yg,
and _ to probe geometry. The leading order term for Cps

was determined earlier from aerodynamic considerations, that is

Cps(0, 0) -- 1. This analysis leads to the following results;

az ._ cos 2 Tp and cl _ _ sin ep. These resultsare approximate

and are not intended to replace calibration, but they do provide

some insight into the effect of probe geomelry on probe response

and uncertainty.

h is worth reiterating the fact that neither the calibration or dam

reduction procedures requires iteration. All results are obtained

by direct calculation.

Experimental Verlflcatlon of the Algorithm

It remains to show that the simplified Taylor's series, given

by Equations 7, 8, 11 and 12, whose derivation was based on the

symmetry of an ideal probe, can faithfully represent the cuh'bration

data of an actual five-hole probe. Flow direction calibration results
for a typical probe is shown in Figure 3. Calibration data were

obtained for pitch and yaw angles ranging from -20 ° to +20 °
in 2 ° increments. The Mach number of the calibration airslream

was approximately 0.4. The independent variables of Figure 3

are the coefficients Cp,, and Cp,. Ploued togetherare contour

levels of the unitvector components v and to. Solid lines are the

Taylor's series approximations, broken lines are calibration data.

The lines of constant r appear nominally vertical and lines of

Cp_O

-1

-2

.... i ......... i ......... i ......... ; ......... i,,,

.,.I ......... i ......... i ......... i ......... *.tJ

-2 -1 0 1 2

ep,,

Figure 5 Cps calibration results



Restrictions For Large Flow Angles

As flow angles increase eventually this and similar algorithms
become unreliable. There are several mathematical reasons that

will cause the algorithm to fail. The first is when the relationship
between the flow direction variables v and w and the fiow direction

codiicients Cp_ and Cp_ is no longer one-to-one. This relation-

ship is truly one-to-one only if we restrict the set of flow direction

variables and corresponding flow direction coefficients to within

a neighborhood of Cp, = 0 and Cp,_ = 0 that satisfies Equation

24. Where Equation 24 is not satisfied can be estimated if we

restrict the pressure coeflidents such that Cp_ = Cp_ = Cp,nox

which will lead to two degenerate fourth order equations, Equa-
tions 25 and 26. The roots of Equations 25 and 26 are determined

using the quadratic equation.

I °.]det oE. o_v,, ¢ 0 (24)
k _ OCpw

4
- cs)Cp,,_, + cl = 0 (25)(5c_ + cs - 3c6)Cp,,_= + (3c2 2

C 4 25(c4+ cs + c_) P,_a= + 3(c2 + c._)Cpmas + c, = 0 (26)

A second reason for the algorithm to fail is when the relation-

ship between probe pressures ps and po_g and total and static

pressure po and p is no longer one-to-one. This reslricts the set
of flow direction variables and corresponding flow direction co-

efficients to a domain contaL-fmg Cp_ = 0 and Cp,o = 0 that

satisfies Equation 27. Where Equation 27 is not satisfied is es-

timated by the same restriction, Cp_ = Cp_ = Cp .... which

leads to another degenerate fourth order equation, Equation 28.

det _ = (Cps - Cpavg) 2 # 0 (27)

.,))cv..°.+(2(b2 - aa) + (ha -
(28)

a2 )Cpma= -{- 1 -- a, = 02(bl --

All roots of Equations 25. 26 and 28 are examined and the

smallest positive root is substituted into Equation 29. With the

flow direction variables restricted to a domain satisfying Equation

29 both the relationship between the flow direction variables and

the flow direction coefficients is one-to-one and the relationship

between probe pressures P5 and Polo and total and static pressure
is one-to-one and the algorithm will yield meaningful results. For

the five-hole probe calibration results presented in Figures 3-5, the

restricted domain is approximatelyv2 -4-w 2 < 0.25 or flow angles

approximately less than 30 °. The size of the resuicted domain for

this example is being limited by Equation 24.

v2 + 2 <2(ciCpmo,+
S

(c2 + cs)Cv,,_=+

(=, + _ + _)cvk°=) 2

(29)

UNCERTAINTY ANALYSIS

Because of the new algorithm's simplicity and accuracy, it is

well-suited to an analytical treatment (as opposed to a "jitter"

or numerical technique) of the propagation of uncertainty in five-

hole probe measurement. The objective of the uncertainty analysis

is to quantify uncertainty of five-hole probe measurement results

(e.g., total pressure, static pressure, and flow direction) and de-

termine the dependence of the measurement uncertainty on the

uncertainty of all underlying experimental and calibration mea-
surements. These results will provide a general procedure that

other researchers may use to determine five-hole probe measure-

ment uncertainty and provide guidance to improve five-bole probe

measurement technique by pinpointing greatest sources of uncer-

tainty.

To discuss uncertainty, we have adopted the terminology of

Kline (1985). where meas,rand describes a physical quantity that

is measured and result describes a quantity that is obtained from

a calculation involving measurauds. Mathematically. results are

dependent variables and measnrands are independent variables.

Equation 30 shows the dependence of the uncertainty of the result

6R upon the uncertainty of the n measurands 6z_,...,6z,. In

our case the results are total pressure, staticpressure, and the two

unit vector components v and w (collectively referred m as flow

direction).

(_R) _ ( OR 6z_ _ ( OR _zo_
= \oz_ } +"" + \Oz. } (30)

The uncertainty of the flow direction results calculated in data

reduction ultimately depend on the uncertainty of the five values

of probe pressure measured in the experiment (referred to as

experimental pressure measurauds) and the uncertainty of each

measurement of the five probe pressures and flow angles acquired

in probe calibration (rely'red to as calibration pressure measurands
and calibration flow direction measurands). The dependence of

flow direction results upon all intermediate steps of data reduction

is illustrated in Figure 6. The darker paths represent values or

results that depend wholly on experimental data and lighter paths

values or results that depend wholly on calibration dam. The

uncertainty of flow direction results are determined from repeated
use of Equation 30. For instance, 6_ and 6_ depend on 6Cp_,

6Cp,o, and 6c_ ..... 6c4. The uncert_ty 6Cp, depends on

6p2, _p4,6ps and _p_g and so on. This procedure is repeated
until all the dependence shown in Figure 6 is accounted for.

Consider the common situation when either a single pressure

transducer is used to measure all pressures or several equivalent

pressure transducers are used. Then, their individual uncertain-

ties will be equal. That is, allowing for the possibility that the

transducer(s) used for calibration and experiment are different,

for calibration 6pl,h = -.. = 6ps,k = _pcaz for all k, and for

experiment 6pl = .-. = 6ps = _Pezv- Likewise. if the same

inswament is used to measure pitch and yaw angles to deter-

mine flow direction throughout calibration then their individual

uncertainties are equal,in which case 60_ = 6_b_ = 6_. With

these condirlons the uncertainty of the flow direction result de-

pends on the product of three measurand uncertainty parameters;

@..p/ (vo - v ), ,_p_°_/(vo- v) and_, withtheirinfluencefunc-
tions; fv_=,, f_., and f_. according to the relationship given by

7



Figure 6 Propagation of uncertainty in flow direction results

W __V

Figure 7 Uncertainty in flow direction results

Equation 31. Note that both meesurand pressure uncertainties have

been nondimensionalized with dynamic pressure. In Equation 31

uncertainties for both flow direction results have been combined

to give an overall measure of flow direction result uncertainty.

- "=' \po - p) +
(31)

f? ( 6,., _',.., +

The three measurand uncertainty influence functions in Equa-

tion 31 are functions of flow direction, Plotted in Figure 7 are

Figure 8 Propagation of error in

total and static pressure results

contour levels of the influence functions. The dam used to vali-

date the calibrationand reduction algorithm were used to evaluate

the influence functions. The contour plots of the influence func-

tions are over the range of flow direction used when calibrating the

probe, that is pitch and yaw angles varying from -20 ° to -I-20 ° .

Several conclusions may be drawn from Figure 7. The value of

both influence functions fp.._ and f,, are zero when. = 0 and

w = 0. This is not true for fp,., however, which has the value

/p.=,(0,0) = 2cl/(1 -al). This is a gen=alobs='v_on that
is valid for all five-hole l_robes calibrated with this algorithm. In

practical terms this means that for modest flow angles, most or

all flow direction resultuncertainty comes from uncertainty in the

experimental pressure measurands. For large flow angles, near

the boundm 7 of the calibration domain, the values of f_ and par-

ficularly fp=._ grow rapidly. Howeve:, levels of fp=._ and f_

generally are less than fp,=p except for large values of both v and

w where fP=-F actually decreases.

Like flow direction, the uncertainty of total and static pressure

results calculated in data reduction depend on the uncertainty of

the five values of probe pressure measured in the experiment,

the uncertainty of each measurement of the five probe pressures

acquired in probe calibration as weU as each measurement of the

calibration stream's total and static pressure. Figure 8 shows the

dependence of total and static pressure results on intermediate

data reduction results. Because flow direction does not appear

in Figure 8 the uncertainty of total and static pressure results

do not explicitly depend on calibration flow direction measurand

uncertainty. Values of total and static pressure result uncertainties

are determined by repeated use of Equation 30.

Figure 9 shows contour levels of the two measurand uncertainty

influence functions for toL_I pressure in Equation 32. There are



Figure 9 Uncertainty in total pressure results

several similarities between the total pressure result uncertainty

influence functions and the corresponding flow direction result

uncertainty influence functions shown in Figure 7. First, the value

of gP=,= is zero when t, = 0 and w = 0 while gv,=p (0, O) is
nonzero. Like flow direction result uncertainty, for small flow

angles the total pressure result uncertainty comes almost entirely

from uncertainty in the experimental pressure measurands. In fact,

gp+=, (0, O) = 1 which simply means that it is impossible for total

pressure result uncertainty to be less than experimental pressure

measurand uncertainty. The value of gv=,_ increases quickly away

from the origin, however, values of gp_, remain less than g_==,.

+ ( 6p,+=i +_+:'( 6j_ +_2 =g_' ( ,Sp.=.v _"r+ l_gp,=. '
,, p] "=" - p)

02)

Figure 10 shows contour levels of the two measurand uncer-
tainty influence functions for static pressure result uncertainty in

Equation 33. There are several interesting differences with the
corresponding influence functions for flow direction result uncer-

tainty and total pressure result uncertainty. First, the value of

hp=.r is nonzero when v = 0 and w = 0, while hp+=, (0, 0) = 1.
This means that for small flow angles, the uncertainty of static

pressure results are necessarily greater than the uncertainty of to-

tal pressure results. This fact confirms the belief that static pres-

sure determined by a five-hole probe is not as "accurate" as total

pressure obcafined with the same probe.

i+,+y' + + (+,,°°+ ++>
= +,.., _ P/ + h,=., p/

The preceding analysis can be used to provide guidance in ways

to reduce five-hole probe result uncer_iuty. In general, reducing

result uncertainty can be achieved by either reducing the measur-

and uncertainty parameters 6pe=p/(po - P). 6p_/(po - p) and

6_0 or by reducing their respective influence functions. The mea-

surand uncertaintyparameters 6pe=p/(po -- p) and 6pcod(po -- p)

can be reduced by either decreasing the numerator by using more

accurate transducers or by averaging repeated measurements, or

by increasing the denominator by raising the dynamic pressure of

the flow. However, the ability to increase dynamic pressure is

limited since this typically requires higher velocities and as the

sonic velocity is approached compressibility effects become sig-
nificanL The measurand uncertainty parameter 6_0 can also be

reduced by using a more accurate angle measuring device or av-

eraging repeated measurements.

The measurand uncertainty influence functions fp+=p, gp==, and

hp==, depend on the probe calibration coefficients as well as

and w. To reduce fp.=p, gp==, and hv==, requires changes in the

probe calibration coefficients, which are determined by the probe

geometry. To reduce fp.=,, gp==, and hp==, requires making

physical modifications to the probe. For flow direction uncertainty,

fp+=,(0, 0) --- 2cl/(1- al). Using the approximations stated
earlier relating probe cah'bration coefficients to probe geometry

yields the approximation fp,=, (0, 0) _ 0.5/sin _. Therefore,

flow direction result uncertainty can be improved by increasing

the angle of the openings of the four outer robes. However,

intuition says that this will also reslrict the range of flow angles for

which the probe can be used. For totaland static pressure result

uncertainty gvo=, (0, 0) = hv.=, (0, 0) = 1. This observation is
valid for all five-hole probes, so it is not possible to lower this

value by making modifications to the probe. Modifying the probe

will not improve total or static pressure result uncertainty for small

flow angles.

The measurand uncertainty influence functions fv=._, gv=.I,

hpcoZ and f_ depend on calibration data as well as v and w. The
probe calibration coefficients themselves to not explicitly appear

in fp©.a, gp=oJ, hp_,,, and fso, however modifications to the probe
geomelry will effect them by changing the calibration measure-

ments. The influence functions fp_.=, gp_+, hv=._, and f_ may
be reduced by modifying the probe calibration procedure. One

way of accomplishing this is by acquiring more calibration data.
For n total calibration measurements used the influence functions

fv=._, gv=.+, hp=._, and f_o are approximately O(1/_rn) so the

overall levels of fp=.t, g_=.+, hp=., and f++ may be approximately
halved by acquiring four times as much calibration data. To ver-

ify this the uncertainty values presented earlier were compared to

uncertainty values calculated using a subset of the original cal-

ibraton data containing one-fourth of the number of calibration

W

_M

Figure 10 Uncertainty in static pressure results
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Figure 11 The Internal Fluid Mechanics Facility (IFMF) (Dimensions in feet)

data. This subset was obtained by skipping alternating rows of

pitch and yaw data so that the distribution of pitch and yaw an-

gles for the _n data subset was equivalent to the original
cah'bration dam set. This analysis showed that the overall values

of the influence functions Sp,I, gp_.J, hp_.l and S_ were nomi-
nally greater by a factor of two for the smaller cah'brafion data set.

The influence functions fp.ffiv' gP,,,v and hp,,, were unchanged.
as was expected

Changing the distribution of pitch and yaw values used for

cah'brafion will also change fp_.l, gp_., hpo.,, and f,,. In

general these influence functions are reduced when the pitch

and yaw values used for caHbrsfion are concentrated at higher

flow angles. This was confirmed by using two subsets of the

original cah_oration data. Both subsets contained the same amount

of data, but one subset used cah'brafion data acquired at large

flow angles while the other used data acquired at small flow

ang]e.s. The resulting values of fro.I, gpc.l, hP.z, and f_o were

compared and showed interesting results. For total pressure result

uncertainty, the value of gp_,.l at large flow angles from the large

flow angle cah'brafion data was significantly less (by a factor of
four) than the c_nes_nding small flow angle calibration data set,

while gp_._ (0, 0) = 0 for both cah_ation dam subsets (as stated

e_lier). The same observations hold for fp_,_ and f_. For flow

direction result uncertainty and total pressure result uncertainty the

conclusion is unambiguous. Given a fixed amount of cah'brafion

data, flow direction and total pressure result uncertainty is reduced

by using calibration data acquired at larger flow angles. For static

pressure result uncertainty the comparison of hvc.i was more

complicated. Values of hp_, at large flow angles were less for

the large flow angle cah'bration data set, as was expected, but

hp_., (0, 0) was less for the small flow angle cah'bration dam set.

This suggests that static pressure result uncertainty is improved in

the region where the calibration measurements are concentrated.

The major results of the uncertainty analysis are summa_zed
below:

and their corresponding influence functions. The measur-

and uncertainty parameters quantify the uncertainty of the

underlying calibration and experimental measurands.

2. For modest flow angles, most or all flow direction result

uncex'tamty and total pressure result uncertainty comes from

uncertainty in the experimental pressure measurands.

3. Total and static pressure resultuncertainty can not be less

than experimental pressure measurand uncertainty.

4. For modest flow angles, static pressure result uncertainty is
necessarily greater than total pressure result uncertainty.

5. Result uncertainty may be reduced by reducing either the

measurand uncertainty parameters or their influence func-

tions. The measurand uncertainty parameters may be re-

duced by either using insWaments with less measurement

uncertainty or by using repeated measurements.

6. To reduce the three measurand uncertainty influence func-

tions corresponding to experimental pressure measurand un-

certainty requires modifying the probe geometry. For modest

flow angles, flow direction result uncertainty can be reduced

by increasing the angle of the openings of the four outer

tubes. For modest flow angles, the total and static pressure

result uncertainty coming from experimental pressure mea-

surand uncertainty can not be reduced.

7. To reduce the four measurand uncertainty influence functions

corresponding to calibration pressure and flow direction mea-

surand uncertainty requires modifying the calibration proce-

dure. The influence functions can be reduced by approxi-

mately one-half by increasing the amount of calibration data

acquired by a factor of four.

8. In general flow direction and total pressure result uncertainty

may be reduced by acquiring calibration data at larger flow

angles. However, this is not generally true for static pressure

result uncertainty.

THE FIVE-HOLE PROBE RAKE

1° The uncertainty of five-hole probe results (e.g., total pres-

sure, static pressure and flow direction) are shown to depend

on the product of three measurand uncertainty parameters

Motivation

The five-hole probe rake is built for use in NASA Lewis'

I0



IFMF.This facility is schematically illustramd in Figure 11. The

test section Mach number range is between 0.0 and 0.8 with

corresponding mass flow rams between 0 and about 16 lbs/sec.
Derails concerning the operations and capabilities of the IFMF

may be found in Porto et al. (1991). The IFMF is currently

being used to test various inlet diffuser designs. These diffuser

geomeu-ies possess h.ighdegreesof streamwise curvatureand large

•changes in cmss-_ction_ area providing a catalyst for strong

secondary flows and almndant boundary layer flow separations. In

the past, the resolution of these three-dimensional velocity fields

was accomplished with a single five-hole probe traversed in the

cross plane of the test section exit duct. The time required for a

complete survey was considerable. As a means of saving time,
the five-hole probe technique was extended to a rake arrangement;

this idea prompted by the common use of Pitot probe rakes for
measurements of total pressure.

Geometry, Construction, and Calibration

The rake probe is illustratedschematically in Figure 12. Ten
individual five-hole probe tips are mounted one inch apart on

the cylindricalstem spanning the tunnel diameter. Each tip is

conswacted from five0.020" outer diame_ stainlesssteeltubes

silverbrazed in the patternindicatedin Figure 12. After brazing,

each tip face is ground to a 45 ° conical shape using a lathe and

a fine grinding stone. A nominal tip diame.tef of 1/16" results

from the brazing and grinding process. Each tip is individually

calibrated following the previously outlined procedure. Probe

symmetry isganged by inspectingthe calibrationcurveslikethose

shown in Figures3 through5. Probe tipsnot meeting the desired

levelof symmeuT are reground and re.calibrated,or discarded.

• V 0.50°

See tip de_il_

1.00

.-_ Probe rake stem
(0_" D_.)

I ]

I I

I I

Once mounted in the stem, the relative misalignment in pitch and

yaw between consecutive tips is measured by traversingthe full
length of the rake through the calibration facility's open jet and

recording the response of each tip.

Application and Results

Figure 13 illustrates the position of the rake probe inside the

exit ducL One end of the rake probe is secured to a linear motion

actuator which provides probe traversing in the radial coordinate,

r. The other end of the probe also passes through the duct walL

and through a device similar to a linear bearing. This arrangement

greatly reduces probe vibration and deflection when compared to

the method of cantilevered support used with conventional probes.

This can be a significant benefit when flow velocities are large or

the distance to be spanned in a survey is large. Traversing in the

circumferential coordinate, _, is accomplishedby manually turning

the duct with the rake probe and actuator attached. Surgical grade

Tygon robing (0.017" ID) is muted fzom the aft end of each probe

tip, out of the exit duct, and to a series of Electro Scanning
Pressure (ESP) transduce_ modules located in the facility. Probe

pressures are recorded by NASA Lewis' ESCORT data acquisition

system. The collected pressure data are transferred from storage
on the ESCORT Scientific VAX cluster to Sun workstations where

the reductions to velocities are performed.

Figure 14 illustrates transverse velocity components as deter-
mined by the rake probe at the exit plane of an S-duct' which is
the current inlet diffuser model undergoing testing at the IFMF.

The grid resolution is Ar = 0.25", A_ = 10% The local Mach

number isapproximamly 0.4 and the totalconditionsare approxi-

mately atmospheric. Figure 15 is the corresponding result obtained

with a single five-hole probe (Wefiborn et al., 1992). The only

Actuator end.

Figure 12

Side Front

--"_ ""O-_Q_..._._L

TIP DETAIL

Rake probe geometry (Dimensions in inches)

Exit duct outer wall.--

Figure 13 Rake probe actuation
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Figure 14 Transverse velocity components at the diffusing

S-duct exit plane as measured by the rake probe

significant difference between Figures 14 and 15 is the time re-
qui_n_ to collect the data. The data illustrated in Figure 14 was

collected in less than 5% of the time required for Figure 15. Use
of the rake allows a substantial reduction in time and effort for

the researchers at NASA Lewis' IFMF.

SUMMARY

The large data sets associated with the use of a rake of five-

hole probes provides the motivation for a novel algo¢ithm of five-

hole probe cah'brafion and data reduction. In this algorithm four

pressure coefficients are defined and related to flow angles through
Taylor's series. Probe tip symmetries are used to reduced the

number of series coefficients from sixty to thirteen, l.atboratory

cah'brating and testing of individual five-hole probe tips verifies

the validity and accuracy of the algorithm. In data redaction,

the algorithm allows a much faster convezsion of pressure to

velocities, making the rake arrangement of five-hole tips a practical

expedient to acquiring three-component velocity data sets in duct
flow research.

An analytical tre.a_ent of the propagation of uncertainty in

five-hole probe measurement was conducted. The uncertainty

analysis determined the dependence of the result uncertainty on

the uncertainty of all underlying experimental and calibration

measurands and revealed details about the relationships between

probe geomelD,, calibration, data reduction and result uncertainty.

This study outlines a general procedure that other researchers may

use to deumnine five-hole probe result uncertainty and provides

guidance to improve measurement technique.

The abi_ty to measure total and static pressure (hence velocity

magnitude) and flow direction with a five-hole probe is well

established. Recently we have constructed a rake of five-hole

probe tips that operates in a non-hulling mode. Current non-

nulling five-hole probe calibration and data reduction procedures

typically involve complex interpolative algorithms. Development
of the new algorithm makes the rake probe practical to use. The

new algorithm uses two components of the unit vector in the flow

direction instead of pitch and yaw angles as variables as wen as

probe tip symme_es to greatly simplifying both calibration arid

data reduction. In data reduction, total pressure, static pressure,

and flow direction are calculated directly, without tables, spline

network interpolation, or additional approximations. The result

is a much faster reduction to velocities, making a rake probe

arrangement of five-hole tips a practical expedient in duct flow
research.
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Figure 15 Transverse velocity components at the

diffusing S-duct exit plane as measured by a

conventional five-hole probe (yaw-nulling method)
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APPENDIX CAUBRATION AND DATA REDUCTION

The coordinates of the ith probe opening (measured relative
to the probe coordinate system) is x_ = (z,, y_, zi). Because of
probe zz--plane symmetry the following transformations are valid

T,(xl)= xl
%(x2) = x4
Z,(x3)= x3
Z.(x,)--x_
T_(xs)= x5

where T v : (x, y, z) --* (x, -y, z)} For zy--plane symmelry the
following transformations are valid

T,(x_)= x.
T=(x2) = x2
T,(x_)= xl
T,(x4) = x,
T=(xs) = x5

where T= : (z,g,z) _ (x,y,-z). Likewise, for 90 ° rotmionsl
symmetry about the z-axis the following transformations are valid

Tso(xl) = x4
Tbo(x2) = xl
T,o (x3) = x2
Tgo(x_) = x.
T,o(xs) = xs

where Tgo : (z, y, z) ---* (z, z, -y).

Consider a five-hole probe in a steady, uniform air flow. The
boundary conditions that define the flow field are the free stream
conditions at a distance well upstream of the probe. They are
the free stream velocity Voo = (Uoo, V_, Woo) (measured rel-
ative to the probe coordinate system) and the fzee stream pres-
sure p_. For given free stream conditions there is a functional
relationship between spatial coordinates and velocity and pres-
sm'_, V : (z,y,z) _ (U,V,W), e : (z,y,,_) --,- P and
P0 : (z, y, z) -- p0- The pressure sensed by the ith probe open-
ingisp_ = p(x_)

Because of zz-plane symmetry and the invariance of the equa-
lions of motion T_ o V o T_ 2 and P o Ty are the velocity and
pressure fields defined by the free stream conditions T Uo Voo

and poo. This requires

Pl = p(xl) = e o T,(x,)
= p(x2) = P o T,(x_)

p3 = p(x_)= P o Z,(x_)
p, = p(_,)= P oT,(x2)
p5 = p(xs) = e o T,(x_)

x The function T_ is sometimes called a flip. The domain of Ts
is not necessarily physical space. For instance Ty : (u, v, w) ---

(,,,-_,w).
2 The notation o used here is the composition of two functions.

For instance, for functions f(x) andg(x) then f o g = f(g(z)).

The expression P o T_(x_) is interpreted as pi for the fIee stream
conditions T, o Voo and poo. For instance p2 for free slream
conditions Voo and pco equals p, for f_ee stream conditions
T_ o Voo and poo. Thinking of the probe pressures as functions
of free stream conditions then

pl (Uoo,Voo,Woo,poo)= p_(Uoo,-Voo,Woo,poo)
p2(Uoo,Voo,Woo,poo)= p,(Uoo,-Voo, Woo,poo)
p_CUoo,voo,woo,poo) = p_(voo,-voo, woo,poo)
p,(U_,voo,w_,poo)= p_(voo,-voo,woo,poo)
ps(uoo,voo,woo,poo)= p_(u=,-voo, woo,poo)

For zy-plane symmetry T= o V o T, and P o T= are the
velocity and pressure fields defined by the bee s_eam conditions
T= o Voo and poo. Therefore

pl = p(_,) = P o z=(_)
p2 = p(_) = P o T,(_)
p3= p(x3)= P o T=(x,)
p, = p(x,) = P o T,(x4)
ps = p(xs) = P o Tf(xs)

and

p,(uoo,voo,woo,p=) = p_(uoo,voo,-woo, poo)
_(uoo, v®, woo,p®) = p_(uoo,voo,-woo, poo)
p_(Uoo,voo,woo,poo) = p_(uoo,voo,-woo,poo)
p,(Uoo,voo,woo,poo)= p,(uoo,voo,-woo,poo)
p_(Uoo,v=, woo,poo) = _,_(uoo,voo,-woo,poo)

For 90° rotational symmetry Ts0 o V o Tg0 al_ PoTgo are the
velocity and pressure fields defined by the free stream conditions
Tg0 o Voo and poo. Therefore

Pl = p(x,) = P o Tg0(X2)
P2 = p(x2) = P o Tgo(x3)

p3 = p(xs) = P o Tgo(x,)
p, = p(x4) = e oTgo(x,)
p5 = p(xs) = P o Tgo(xs)

and

p_(Uoo,voo,woo,p®) = _(uoo, woo,-voo, poo)
p_(U=, v=, w=, p®) = p_(u®, woo,-voo, poo)
p_(V®,voo,w®, poo)= p,(v®, woo,-voo,poo)
p,(Uoo,voo,woo,poo)= p,(uoo, woo,-voo, poo)
p_(Uoo,voo,woo,poo)= p_(uoo,woo,-voo, p=)

To develop our calibration and data reduction procedure,five
pressure coefficients, one for each probe opening, are defined by
Equation 1. These coefficients are not used for calibration and data
reduction, but they help analyze concepts relating to probe symme-

trythat are essential to ourcalibration and data reduction scheme.
Since pi may be considered a function of Uoo, Voo, Woo,poo then
so is the coefficient Cpi a function of these four quantities. Like
the pressure coefficients described previously the pressure coeffi-
cients given by Equation 1 are insensitive to a range of Reynolds
and subsonic Mach numbers and depend on flow direction only.

Therefore, Cpi is a function of the unitvectors uoo, voo,woo.
Since this is a unit vector, only two components are independent,
so with the restriction uoo > 0 and dropping the oo subscript for
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the sake of simplicity we say Cp_ is a function of v, w, as is

shown in Equation 1.

Cw = w (Uoo,voo,woo,voo) - voo
po,oo- po_ (1)

= Cp,(v,w)

We may now state the probe symmelry rules in terms of the

pressure coefficients Cp_. For zz-plane symmetry

c_(,,,,.)= cp,(-,,,,,,)
cp_(_,_) = cp_(-_,w)
cp,(,,, ,,,) = c_(-,,, ,,,)
cp_(,,, ,.) = cp.(-,,,,,,)

For zy-plane symmetry

cp, (,,,,,,) = cp_(,,,-,,,)
c_(,,,,,,) = c_(,,,-,.)
cp.(,,,,o) = cp, (,,, -,.)
cp,(,,,,.) = cp,(,,,-,,,)
Cp.(_,,.) = Cp.(_,-w)

For 90 ° rotational symmetry about thez-axis

cp, (,,, ,,,) = c_ (,,,,-,.,)
c_(,,, _) = cp_(,,,,-_)
cp_(,,, w) = cv,(,.,-,,)
cp, (,,, ,,,) = cp,(,.,-,,)
c,,,_(,,,,.) = cp.(,,,,-,,)

Proofs of the rules stated above are very slraighfforward. For

_,_ -- p_

= n(troo, -voo, woo,p_) - p=
po,oo -- poo

= Cpl (--v, w)

The remaining proofs are nearly identical and are not repeated.

The pressure coefficients used in cah"vrafion and data reduction

and given by Equations 1, 3 and 4 can also be defined in terms of
the five pressure coefficients, as shown below.

l
cp°.,_= _-(cp_+ c_ + cp_ + cp,)

c_ - cp_
Cp,, =

Cp5 - Cp,,og

Cps - Cpx

Cp,_ = CI,5 - Cpo,9

The probe symmetry rules for the coefficients Cp,_ o, Cp_ and

Cp_ ale

cp.._(,,, ,,,) = cp...(,,,-,,,)
cp,,._(,,,,,,) = cp,,._(,,,,-,,)

cv_(_,_) = -Cp.(-,,,w)
cp_(_,,,,)= Opt(,,,-,.)
Cp.(,,,,.)= Cp..(-_,_)
cp,.,(,,,_) = -Cv,.( ,,, -w)
Cp_(,_,,,,) = Cp,,,(,.,-,,)

Proofs for these rules arc statedbelow

1

cp..(,,, ,,,)= 4(cp, (,,,,.) + Cp2(v, u) )

+ cp_(,,,,,,) + cv.(,,, ,,,))

= _(cp, (-,_, ,,,)+ cv, (-,,, ,,,)

+ cp_(-,,, ,,,)+ cp_(-,,,,.))

= cp,.,,g(-,_,w)

1
cp...(,,, ,.) = _-(cp, (,,, ,,,)+ cm(,,,,,,)

+ cp_(,,,,.) + cp,(,,, ,,,))

= ¼(cw(,,,-,,,) + c_(,,, -,,,)

+ cp, (,,, -,,,) + cp, (,,, -,.))

= cpo,,g(,_,-w)

I

cp,,.,(,,, ,.) = -_(cp, (,,,,,,)+ Cp=(v, 111))

+ cw(,,, ,,,)+ c_,(,,, w))

¼(c_ (,,,,-,,) + cp_(,.,-,,)

+ c_, (,,,,-,,) + cv, (,,,,-,,))

= c_o,,_(_,-,,)

cp.(,,, w)- c_,(,,,,,,)
cp,,(v,,.) = cp.(,,,,,,) - c_,,..(,,, ,,,)

= cp,(-,,,,,,)-c_(-,,,,,,)
cp,(-,,, ,.) - c_._.(-,,, w)

c_ (-,,, ,.) - cp,(-,,, ,.)
cp,(-,,, ,_)- cp,,..(-,,, ,.)

= -c_. (-,_,,.)

c_,.(_,.) = c_(,,,w) - cp,(,,,,,,)
cp,(,,, ,,,) - Cpo.,(,,, ,,,)
c_(,_,-w) - cp_(,.,,-_)

= cp,(,,,-w) - cp,,,,_(,,,-w)

= Cp,,(,,,-w)

C_s(,,,,,,) - Cp_(,,, _)
C_,(,,, ,,,)= Cp.(,,, ,,,) - C_.o.(,,, ,,,)

cp4-,,,,,,) - cp,(-,,, _)
- c_,(-,,,,,,) - c_.._(-,,,,.)
= c_,,,(-,_,w)

15



= -
Cps(_,,o)- Cp..,(_,,_)

cv, (,,, -,,,) - cp_ (,,, -,.)
= cp,(,.-,,,) - cp°.,(,,.-,,,)

cp,(,,,-,,,) - cp,(,,,-,,,)
= - cp,(,,. -,,,) - cp..,(,,. -,,,)

= -Cp.(_,-_)

Cm (v, w) - cp_ (_,_,)
cp.(,_, .) = cp,(_,,,% - cp..,(_,,,,)

= cp4,,,,-,')-cp,(",,-")
cp, (,,,, -,,) - cp..,( ,,,, -,, )

= cp,,,(w,-_)

The symmelry roles for v and w as function of Cpv and Cpw

are statedand proven below

_(cp., cp.) = -,,(-cp., cp,.)
_(cp., cv,.) = ,,(cp.,-cp.)
,,,(cp., cp,,,) = ,_(-cp., cp,,,)
w(cp., cp. )= -,,,( cv,,, -cp. )

_(cp_,cv.) = w(cp.,-cp.)

,,(cp., cp.) = ,_(cp.(,,, ,,,), cp,,,(,,, _))

= ,4cp_(,,,-_), cp.,(,_,-_))

= ,_(cp.(,,, _,), -cp,_(,_, w))

= ,,(opt,-cp,.)

The proof that w( Cp,,, Cp,, ) = w(-Cp,,, Cp,_ ) is identical and

isnot repeated.

,,(cv., cp.) = .(cpo(,,, ,,,),cp,,,(,,, ,,,))

= -_,(cpo(-,,,,,,), cpw(-,,, w))

= -,,(-cp.(,,,,,,), cp,.(,_, _))

= -,_(-Cp.,cp.)

The m_of ,hat _(Cv,,, Cp_,) = -w(Cw,-Cp_,) is id_naca]
and is not repeated.

,,(cp,(,,,,,.,), ,,,))= ,,,(cp,,(,,,,,,),cp,,,(,,,,,,))
,,(cp. , cp., ) = ,,,(cp.( ,,, -,,,), cp. (,_, -,,,))

= .(-cp.(_,_),cp.(_,_))

= .(-Cp., Cp.)

= .(cp,., cp.)

The symmetry rules for Cp..g and Cps as functions of Cp_

and Cp,_ are stated and proven below.

cv,,.,( cv., cp., ) = cp,,._(-cw, cp,. )
cp..,(cv., cp.,) = cp..,(cp., -cp,_)
cvo.,(cp., cp.) = cp..,(cp_,, -cp.)
cp,(cp,,, cp.) = cp,(-cv., cp,,,)
cv, (cp., cp.) = cp,(cv., -cp,,,)
cv, (cp,,, cw,) = cvs(cv,., -cw )

Cpo._(cp., cp,.) = cv..g( cp.(,,, w), cw,(,_, _) )

= cp..,(cp.(-_,,_),cp,.(-,,,_))

= cp.,,_(-cp.(,,,,,,), cp.(,_, w))

= cp..,(-cp., cv,.)

The ],roofsthatCv.,,g(cp,,,cp,,,) = Cp,,.g(cp,,,-Cp,_),
Cp,(Cp.,cp_,) = cv,(-Cv,,,Cp.) andCv,(Cp,,,Cp.) =
Cps(Cp., -Cp.) are identical and are not repeated.

cp..,( cp., cp,_) = cp..,(cp.(,,,,,,), cv.,(,_, w) )

= cp.._(cp_(_, -_), cp.(w, -,,))

= cp,,,,_(cp,_, cv,,)

= cp,,.,(cp.,-cv.)

Theproofmat Cv,( Cp,,,Cp.) = Cp,( C_,,., -Cvo) is i_.,_:,d
and is not zcpeau_l.

The consequence of the symmetry rules on the Taylor's series

for CP_v9 arid Cps are stated and proven below

_j = O, i = 1,3,5,...

a,j = O, j = 1,3,5,...

ftij --'-- O.ji

b_j = O, i = 1,3,5,...

bij = O, j = 1,3,5,...

C_.,,.(Cp,,, Cv,.) = O.oo

+ a,oCp,+ _o,C_.

+ a_oC__.+ a,,C_.Cv.+ ao_C_i

+ a3oCp3_ + a21Cp,,Cp. + az2CpeCp 2

+ ao_C_3_

+ a_oC__, _ =+ a3,Cp.Cp,,, + a22Cp_Cp_

+ .,,c_.c_ + .o, c_'_

-}-...

Cv.._(-C_., Cp,_) = _oo

- :_oCW + ao_Cv,,

+ a_oCp_ -- an Cp, Cp_ + ao2Cp_

a3o Cp 3 a 2 2-- q- 21Cp_,Cpw --al2Cp,,Cpt_

+ ao.,C_

+ a,oCp _, _ a 2 2-- .31CpeCpw Jr 220pvCp, _

"Ji" • • •
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Cp°_,(Cp_, Cp.) - Cpo.,(-Cp_, Cp_) =

2aloCp_

+ 2an Cp, Cpt_

+ 2a3oCp_ + 2a_Cp_Cp_
3+ 2a31Cp_Cp_, + 2a13CpvCp_

-[-...

=0

since cp.og(cw, cp.) -cp..g(-cpo,cw) = 0 for an cp_
and Cpw then all the ¢oeflicents aij wh=e i = 1, 3, 5,... are
equal to zero. The proofs that aO = 0, ] = 1, 3, 5,..., b_j =
0, i = 1, 3, 5,... and b0 = 0, j = 1, 3, 5,... are identical and
are not repeated.

cp._( cp_,cp,.) = aoo
+ a,oOp. + ao,Cp.,,

+ a2oCp_ + anCp.Cp,. + ao2Cp_

+ a3oCp_ + a_iCp, p,_+ anCp.Cp,.

+ ao3Cp_
3 2 2

+ a4oCp_ + a31Cp_Cpt# + "22Cp_Cpto

+ a,3Cp_Cp_ + ao4Cp_

+

Cpo.,(C_,,,,, Cp,) =

+

+

+

+

aoo

aloCp,_ + aol Cp,

a2oCp_ + anCp,,Cp, + ao=Cp_

a3oCp_ 2+ a21CptL,Cpv + anCpt.Cp_

+ ao3Cp_
3 2 2

a4oCp_ + a31 CptvCp, + a22Cp_Cp,:

C 3 4+ az3Cpto pe + ao4Opv

- Cp..,(Cp,.. Cpo)

= +(_o - ,o,)(cp.- cp..)

+ (,,20- "o_)(cp_,- cpL)

- ,,o,)(cp. - cpL)+ (a3o 3

- ,,.)(cp.cp,. - cpocpL)+ (a2_ 2

+ (,,.o- ,o.)(c,4 - cpL)

- ,,.)(cp.cp,. - c,,.cpL)+ (a31 3

,Jr....

Sincecp°.,(Cp_,Cp_,)- cp°._(cp,.,cp.)= o forancp.
and Cp_ then this requires a_j = a_. The proof that b_j = bj_
is identical and is not repeated.

The consequence of the symmetry rules on the Taylor's series
for v and w are stated and proven below

cij = 0, i = 0,2,4,...

clj = O, j = 1,3,5,...
di3 = O, i = 1,3,5,...
dij = O, j = 0,2,4,...
c_ = dj_

,_(cp.,cp.) Co0

+ c,oCp_ + co,C_

+ c2oC/,_+ cnCp_Cp,. + co2C_

2 C 2+ c3oCp_ + cytzCp._Cp_+ cz2Cp_ Pu:

+ co3Cp_
3 2 2

+ c4oCp_ + c3zCp_Cp,# + c22Cp_Cpt_

+ c_Cp.Cp_ + co_Cp_

,,(-C.,,...Cp..)= coo

- c,oCp_ + cozCp,.

+ c2oCp_ - c,zCp_Cp,.+ co2Cp_

2-- c30Cp_ + c2z Cp_Cp,# - cz2Cp_Cp 2

+ co3Cp_

+ c_oCp_ - 3 _C31CpvCp_v + c220pvCpt_

- c_Cp_Cp_ + co_Cp_

-J(- . . .

.(c_.,cp,.) + ,,(-cp.,cp,.) =
2coo

+ 2co_Cp,o
2 2

+ 2c_oCp_+ 2co2Cp,.
2 3

+ 2c2z Cp_Cp_ + 2co3Cp_
4 2 2 4

+ 2c4oCp,,+ 2c22Cp_Cptv + 2co_Cp,#

Jff...

=0

Since ,_(Cp,, Cp,,) + v(-Cp,, Cp,,) = 0 for all Cp, and Cp,o
then all thecoefficentscij where i = 0, 2, 4, ... areequal to zero.
The proof that d/j = 0, j = 0, 2, 4,... is identical and is not

repeated.

,,(cp._,cp_) = coo
+ c,oCp, + co,Cp,.

+ c=oCp_ + cnCp.Cp,. + co=Cp_
2

+ c3oCp_ + c2zCp.Cp..+ cnCp,Cp_

+ C03 CpL

3 2 2
+ c_oCp*, + c3z Cp_ Cp,, + c_2Cp_Cp,,

+ cl_CpoCp_ + co_CpL
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,,(c p. , -c p. ) =
+

+

+

+

COO

cloCp. - col Cvw

c2oCp_ - cnCp.Cp,. + co2Cp_

c3oOp_ 2- c21Cp,,Cp,# + c12Cp_Cp_

- _o_Cp_.

_,oCp; - c3, Cp.Cp,. + c2_Cp_ Cp_

- c_cp.cp_ + _,cp'..

- ,,(Cp.-cv.) =

+ 2col Cp,_

+ 2c,lCp.Cp,,
2 3

+ 2c=,Cp_Cp,.+ 2co3Cp_,
3 3

+ 2c31Cp_Cp_#+ 2c13Cp_Cp_,-l-

"JC---

=0

sin,=,,(Cp., Cv.) - ,,(Cp.,-cp.) = o forancv. md CV,.
then all the ¢oemc.entsci._where j = 1, 3, 5,.. are equal to zero
The proof that d_j = 0, j = 0, 2, 4,... is identical and is not

,,(Cpo,Cp,.) =
+

coo

cloCp. + co,Or.,

+ c2oCp_ + cnCp_Cp,. + co2Cp_

+ c3oCp_ 2+ c2,Cp,,Opw + c12Cp_Cp_

+ co3Cp_

+ c_oCp: 3 2+ c31Cp,,Cp_ + c22Cp_Cp_

+ c_Cp.Cp_ + co_Cp_

•Jf.-...

,,,(c_,,. c,,.) =
+

+

+

doo

dloCp., + dolCp,

d2oOp_ + dnC'p,.Cp,, -I- do2Cp_
2d3oCp_ + d2_Cp,.Cp. + d,=Cp,.Cp_

+ do_Cp3,
3 2 2

+ d4oCp_ + dB_Cp,_Cp. + d22C_,,.C_.

+ d_Cp._C_ + do_Cp_

,,(cp_.c_..)-_(cp...c_.)

= +(c_o- do_)(C_o- Cp_,)

+ (_o- do_)(C__,- C_)

+ (_o- ,_)(C_:- C_)

- d,_)(C_.Cp. - Cp.C_)

+ (_,o- do.)(c_: - c_'_)

-{- (c_, -- d,._)(Cp_Cp,,, - Cp,,C'p_)

sino_ ,,(Cp.,cp,.) - ,,,(Cp,.,Cp.) = 0 for an C_. and Cp,.
then this requires c_j = dj_.

18





Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions tor reducing this burden, to Washington Headquarters SenJices, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A New Algorithm for Five-Hole Probe Calibration, Data Reduction, and
Uncertainty Analysis

6. AUTHOR(S)

Bruce A. Reichert and Bruce J. Wendt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505--62-52

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8319

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 106458

11. SUPPLEMENTARY NOTES

Bruce A. Reiche_, NASA Lewis Research Center; and Bruce J. Wendt, National Research Council-NASA Resident
Research Associate at Lewis Research Center. Responsible person, Bruce A. Reiche_, organization code 2660,
(216)433-8397.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 02

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new algorithm for five-hole probe calibration and data reduction using a non-nulling method is developed. The
significant features of the algorithm are: 1) two components of the unit vector in the flow direction replace pitch and yaw

angles as flow direction variables, and 2) symmetry rules are developed that greatly simplify Taylor's series representa-
tions of the calibration data. In data reduction, four pressure coefficients allow total pressure, static pressure, and flow

direction to be calculated directly. The new algorithm's simplicity permits an analytical treatment of the propagation of

uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify uncertainty of five-
hole probe results (e.g., total pressure, static pressure, and flow direction) and determine the dependence of the result
uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general

procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance to

improve measurement technique. The new algorithm is applied to calibrate and reduce data from a rake of five-hole

probes. Here, ten individual probes are mounted on a single probe shaft and used simultaneously. Use of this probe is

made practical by the simplicity afforded by this algorithm.

14. SUBJECT TERMS

Flow measurement; Pneumatic probes; Velocity measurement; Pressure measurement;

Error analysis; Uncertainty analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

2O
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescdloed by ANSI Stcl. Z39-18
298-102


